Sabtu, 29 Agustus 2015

Sistem Pembangkit Tenaga Listrik

 Sistem Pembangkit Tenaga Listrik


1.1 Energi Listrik
Energi listrik merupakan energi yang mudah dikonversikan, dibangkitkan, didistribusikan dengan proses yang efisien, efektif, ekonomis dibandingkan dengan energi yang lain.
Energi listrik didapat dari merubah bentuk energi lainnya, seperti gerak, panas, kimia dan nuklir
PLTA, PLTU, PLTD adalah penghasil listrik dengan merubah energi gerak menjadi energi listrik. Alat yang digunakan di sini adalah generator.
1.2  Sistem Teknik Tenaga Listrik
Sistem tenaga listrik merupakan sekumpulan pusat listrik dan gardu induk (pusat beban) yang satu sama lain dihubungkan oleh Jaringan Transmisi sehingga merupakan sebuah kesatuan interkoneksi
Sistem Tenaga listrik terbagi :
1.        Sistem Pembangkitan
Sistem pembangkitan tenaga listrik berfungsi membangkitkan energi listrik melalui berbagai macam pembangkit tenaga listrik.
Pada pembangkit tenaga listrik ini sumber-sumber energi alam dirubah oleh penggerak mula menjadi energi mekanis yang berupa kecepatan atau putaran, selanjutnya energi mekanistersebut di rubah menjadi energi listrik oleh generator.
      Sumber-sumber energi alam dapat berupa :
·      Bahan bakar yang berasal dari fossil : batubara, minyak bumi, gas alam
·      Bahan galian : uranium, thorium
·      Tenaga air, yang penting adalah tinggi jatuh air dan debitnya
·      Tenaga angin, daerah pantai dan pegunungan
·      Tenaga matahari
1

2.        Sistem Transmisi
Sistem Transmisi berfungsi menyalurkan tenaga listrik dari pusat pembangkit ke pusat beban melalui saluran transmisi.
Saluran transmisi akan mengalami rugi-rugi tenaga, maka untuk mengatasi hal tersebut tenaga yang akan dikirim dari pusat pembangkit ke pusat beban harus ditransmisikan dengan tegangan tinggi maupun tegangan ekstra tinggi.
3.        Sistem Distribusi
Sistem Distribusi berfungsi mendistribusikan tenaga listrik ke konsumen yang berupa pabrik, industri, perumahan dan sebagainya. Transmisi tenaga dengan tegangan tinggi maupun ekstra tinggi pada saluran transmisi di rubah pada gardu induk menjadi tegangan menengah atau tegangan distribusi primer, yang selanjutnya diturunkan lagi menjadi tegangan untuk konsumen
          Prinsip kerja dalam sistem tenaga listrik dimulai dari bagian pembangkitan kemudian disalurkan melalui sistem jaringan transmisi kepada gardu induk dan dari gardu induk ini disalurkan serta dibagi-bagi kepada pelanggan melalui saluran distribusi.
Tegangan generator pada umumnya rendah antara 6 kV sampai 24 kV, maka tegangan ini biasanya dinaikan dengan pertolongan transformator daya ke tingkat tegangan yang lebih tinggi antara 30 kV sampai 500 kV (dibeberapa negara maju bahkan sudah sampai 1000 kV). Tingkat tegangan yang lebih tinggi ini, selain untuk memperbesar daya hantar dari saluran yang berbanding lurus dengan kuadrat tegangan, juga memperkecil rugi-rugi daya dan jatuh tegangan pada saluran.
Penurunan tegangan dari tingkat tegangan transmisi pertama-pertama dilakukan pada gardu induk (GI), dimana tegangan diturunkan ke tegangan yang lebih rendah, misalnya dari 500 kV ke 150 kV atau dari 150 kV ke 70 kV.

2
Kemudian penurunan kedua dilakukan pada gardu induk distribusi dari 150 kV ke 20 kV atau dari 70 kV ke 20 kV. Tegangan 20 kV ini disebut tegangan distribusi primer.
 Ada dua kategori saluran transmisi, saluran udara (overhead lines) dan saluran kabel tanah (underground cable). Untuk saluran udara menyalurkan tenaga listrik melalui isolator-isolator, sedangkan saluran kabel tanah menalurkan tenaga listrik melalui kabel-kabel yang ditanam dibawah permukaan tanah.
1.3  Sistem PLTA
Pembangkit tinggi tenaga air (PLTA) bekerja dengan cara merubah energi potensial (dari dam atau air terjun) menjadi energi mekanik (dengan bantuan turbin air) dan dari energi mekanik menjadi energi listrik(dengan bantuan generator).
Jenis – jenis PLTA :
Potensi tenaga air didapat pada sungai yang mengalir di daerah pegunungan. Untuk dapat memanfaatkan potensi dari sungai ini, maka kita perlu membendung sungai tersebut dan airnya disalurkan ke bangunan air PLTA. Ditinjau dari cara membendung air, PLTA dapat dibagi menjadi 2 kategori yaitu :
1.    PLTA run off river
Pada PLTA run off river, air sungai dialihkan dengan menggunankan dam yang dibangun memotong aliran sungai. Air sungai ini kemudian disalurkan ke bangunan air PLTA.
2.    PLTA dengan kolam tando (reservoir)
       Pada PLTA dengan kolam tando (reservoir), air sungai dibendung dengan bendungan besar agar terjadi penimbunan air sehingga terjadi kolam tando. Selanjutnya air di kolam tando disalurkan ke bangunan air PLTA.


3

Cara Kerja PLTA
Komponen – kompnen dasar PLTA berupa dam, turbin, generator dan transmisi.
·           Dam berfungsi untuk menampung air dalam jumlah besar karena turbin memerlukan pasokan air yang cukup dan stabil. Selain itu dam juga berfungsi untuk pengendalian banjir. contoh waduk Jatiluhur yang berkapasitas 3 miliar kubik air dengan volume efektif sebesar 2,6 miliar kubik.
·           Turbin berfungsi untuk mengubah energi potensial menjadi energi mekanik. gaya jatuh air yang mendorong baling-baling menyebabkan turbin berputar. Turbin air kebanyakan seperti kincir angin, dengan menggantikan fungsi dorong angin untuk memutar baling-baling digantikan air untuk memutar turbin. Perputaran turbin ini di hubungkan ke generator. Turbin terdiri dari berbagai jenis seperti turbin Francis, Kaplan, Pelton, dll.
·           Generator dihubungkan ke turbin dengan bantuan poros dan gearbox. Memanfaatkan perputaran turbin untuk memutar kumparan magnet didalam generator sehingga terjadi pergerakan elektron yang membangkitkan arus AC.
·           Travo digunakan untuk menaikan tegangan arus bolak balik (AC) agar listrik tidak banyak terbuang saat dialirkan melalui transmisi. Travo yang digunakan adalah travo step up.
·           Transmisi berguna untuk mengalirkan listrik dari PLTA ke rumah – rumah atau industri. Sebelum listrik kita pakai tegangannya di turunkan lagi dengan travo step down.
4
1.3  Sistem PLTU
Pembangkit Listrik Tenaga Uap bisa dikatakan pembangkit yang berbahan baku Air. Uap disini hanya sebagai tenaga pemutar turbin, sementara untuk menghasilkan uap dalam jumlah tertentu diperlukan air. Menariknya didalam PLTU terdapat proses yang terus menerus berlangsung dan berulang-ulang. Prosesnya antara air menjadi uap kemudian uap kembali menjadi air dan seterusnya. Proses inilah yang dimaksud dengan Siklus PLTU.
Air yang digunakan dalam siklus PLTU ini disebut Air Demin (Demineralized), yakni air yang mempunyai kadar conductivity (kemampuan untuk menghantarkan listrik) sebesar 0.2 us (mikro siemen). Untuk mendapatkan air demin ini, setiap unit PLTU biasanya dilengkapi dengan Desalination Plant dan Demineralization Plant yang berfungsi untuk memproduksi air demin ini.
Secara sederhana siklus PLTU itu bisa dilihat ketika proses memasak air. Mula-mula air ditampung dalam tempat memasak dan kemudian diberi panas dari sumbu api yang menyala dibawahnya. Akibat pembakaran menimbulkan air terus mengalami kenaikan suhu sampai pada batas titik didihnya. Karena pembakaran terus berlanjut maka air yang dimasak melampaui titik didihnya sampai timbul uap panas. Uap ini lah yang digunakan untuk memutar turbin dan generator yang nantinya akan menghasilkan energi listrik.
Secara sederhana, siklus PLTU digambarkan sebagai berikut :
5

Siklus PLTU
1.        Pertama-tama air demin ini berada disebuah tempat bernama Hotwell.
2.        Dari Hotwell, air mengalir menuju Condensate Pump untuk kemudian dipompakan menuju LP Heater (Low Pressure Heater) yang pungsinya untuk menghangatkan tahap pertama. Lokasi hotwell dan condensate pump terletak di lantai paling dasar dari pembangkit atau biasa disebut Ground Floor. Selanjutnya air mengalir masuk ke Deaerator.
3.        Di dearator air akan mengalami proses pelepasan ion-ion mineral yang masih tersisa di air dan tidak diperlukan seperti Oksigen dan lainnya. Bisa pula dikatakan deaerator memiliki pungsi untuk menghilangkan buble/balon yang biasa terdapat pada permukaan air. Agar proses pelepasan ini berlangsung sempurna, suhu air harus memenuhi suhu yang disyaratkan. Oleh karena itulah selama perjalanan menuju Dearator, air mengalamai beberapa proses pemanasan oleh peralatan yang disebut LP Heater. Letak dearator berada di lantai atas (tetapi bukan yang paling atas). Sebagai ilustrasi di PLTU Muara Karang unit 4, dearator terletak di lantai 5  dari 7 lantai yang ada.
4.        Dari dearator, air turun kembali ke Ground Floor. Sesampainya di Ground Floor, air langsung dipompakan oleh Boiler Feed Pump/BFP (Pompa air pengisi) menuju Boiler atau tempat “memasak” air. Bisa dibayangkan Boiler ini seperti drum, tetapi drum berukuran raksasa. Air yang dipompakan ini adalah air yang bertekanan tinggi, karena itu syarat agar uap yang dihasilkan juga bertekanan tinggi. Karena itulah konstruksi PLTU membuat dearator berada di lantai atas dan BFP berada di lantai dasar. Karena dengan meluncurnya air dari ketinggian membuat air menjadi bertekanan tinggi.
5.        Sebelum masuk ke Boiler untuk “direbus”, lagi-lagi air mengalami beberapa proses pemanasan di HP Heater (High Pressure Heater). Setelah itu barulah air masuk boiler yang letaknya berada dilantai atas.


6
6.    Didalam Boiler inilah terjadi proses memasak air untuk menghasilkan uap. Proses ini memerlukan api yang pada umumnya menggunakan batubara sebagai bahan dasar pembakaran dengan dibantu oleh udara dari FD Fan (Force Draft Fan) dan pelumas yang berasal dari Fuel Oil tank.
6.        Bahan bakar dipompakan kedalam boiler melalui Fuel oil Pump. Bahan bakar PLTU bermacam-macam. Ada yang menggunakan minyak, minyak dan gas atau istilahnya dual firing dan batubara.
7.        Sedangkan udara diproduksi oleh Force Draft Fan (FD Fan). FD Fan mengambil udara luar untuk membantu proses pembakaran di boiler. Dalam perjalananya menuju boiler, udara tersebut dinaikkan suhunya oleh air heater (pemanas udara) agar proses pembakaran bisa terjadi di boiler.
8.        Kembali ke siklus air. Setelah terjadi pembakaran, air mulai berubah wujud menjadi uap. Namun uap hasil pembakaran ini belum layak untuk memutar turbin, karena masih berupa uap jenuh atau uap yang masih mengandung kadar air. Kadar air ini berbahaya bagi turbin, karena dengan putaran hingga 3000 rpm, setitik air sanggup untuk membuat sudu-sudu turbin menjadi terkikis.
9.        Untuk menghilangkan kadar air itu, uap jenuh tersebut di keringkan di super heater sehingga uap yang dihasilkan menjadi uap kering. Uap kering ini yang digunakan untuk memutar turbin.
10.    Ketika Turbin berhasil berputar berputar maka secara otomastis generator akan berputar, karena antara turbin dan generator berada pada satu poros. Generator inilah yang menghasilkan energi listrik.
11.    Pada generator terdapat medan magnet raksasa. Perputaran generator menghasilkan beda potensial pada magnet tersebut. Beda potensial inilah cikal bakal energi listrik.
12.    Energi listrik itu dikirimkan ke trafo untuk dirubah tegangannya dan kemudian disalurkan melalui saluran transmisi PLN.


7
13.Uap kering yang digunakan untuk memutar turbin akan turun kembali ke lantai dasar. Uap tersebut mengalami proses kondensasi didalam kondensor sehingga pada akhirnya berubah wujud kembali menjadi air dan masuk kedalam hotwell.


1 komentar:

  1. Casino Player Reviews - JTG Hub
    I 충청북도 출장안마 had heard that 양산 출장샵 you're able to play your favorite 의정부 출장마사지 games at the casinos for the first time, and this casino 제주도 출장샵 experience 동해 출장마사지 is a  Rating: 3 · ‎11 reviews

    BalasHapus